UTILISER DOZZZAQUEUX POUR SIMULER UN TITRAGE

Lancer le logiciel

I. PARAMÉTRAGE DU CONTENU DU BÉCHER

Dozzzaqueux						<u>_ ×</u>
Choix des réactifs:bécher Choix des réactifs:burette Espéces	s présentes Ré	actions et constantes	Résultats Cho	ix des courbes	s Tracé des	courbes
Bécher Vider Volume initial= 20 mL Température= 298 K	Inorganiqu Cations sir	es Solides Organiqu mples Anions simples	Base d	e réact	<mark>ifs (clic</mark>	c en t
Réactifs choisis:	Identifiant	t Conductivité (0,1 mS	.m²/mol) Synony	vme Formule	M (g/mol)	
x10 /10 Dilution	Ag[2+]	?			107.86825	
Identifiant Concentration (mol/L)	- AI[3+] Am[3+]	61 ?			26.982 243	
	Au[+] Au[3+]	?			196.966 196.9665	
	Ba[2+] Be[2+]	63.6 45			137.327 9.012	
	Bi[3+] Ca[2+]	? 59.47			208.98 40.078	
Perhercher une espére	Cd[2+]	54			112.411	
	Ce[4+]	?			140.11525	
	Co[2+]	?			58.933 58.93325	
✓ Valider et passer à la burette >>>>	Cr[2+]	?			51.997 51.00725	•

- 1) Dans Volume initial, préciser la prise d'essai
- 2) Pour choisir le réactif, cliquer sur Rechercher une espèce puis Par formule brute :

3) Taper la formule brute et valider

Recherche dans la base	<u> </u>
Entrez la formule brute. Puis cliquez sur "OK". Puis sélectionnez le réactif dans la liste ci-dessous.	
Exemples: Ba504 Ag[+] Cr04[2-] Fe03H3[3+]	
mais pas: AG504 (respect majuscules/minuscules) ni Cu(NH3)4 (pas de parenthéses)	
C O H N P 5 2 3 [+] [2+] [3+] [3-] [2-] [-]	
Type de comparaison	
C Mêmes atomes, en nombres inférieurs ou égaux	
C Mêmes atomes, en nombre supérieurs ou égaux	
C Mêmes atomes, en nombre quelconques	
✓ ОК	

- Attention : \rightarrow respecter les minuscules et majuscules
- Astuce: \rightarrow pour gagner du temps et être sûr de trouver la bonne espèce, on peut ne mettre que certains atomes puis cocher Mêmes atomes, en nombres quelconques. Ex : OH pour OH⁻. Il reste à choisir l'espèce souhaitée dans la liste proposée.
- 4) Cliquer sur l'espèce désirée afin de préciser la **Concentration molaire** (ou au choix la quantité de matière, la masse ou la concentration massique)

our l'espéce OH[-], veuillez introduire: au choix:			
• concentration (molaire):			
🔿 la quantité de matière:	1 mol/L	🛷 ОК	🗙 Annuler
) la masse:			
concentration massique:			
tention: le volume de référence est ici celui du nsi, si le volume initial du bêcher (ou volume mi concentration dans le hôcher (reservieurente)	bêcher (ou de la burette si vous êtes en train de remplir l xximal à verser pour la burette) est de 100mL et que vou la burette) sera de 0 1 mol/1	a burette) s mettez 0.01 mol,	
vous saisissez 0.2mol/L, la concentration sera	de 0.2mol/L dans le bêcher (resp. la burette)		

Attention : \rightarrow écrire les nombres décimaux avec un point et non une virgule : taper 0.1 et non 0,1.

- 5) Recommencer les étapes 2) à 4) pour toutes les espèces à ajouter dans le bécher.
- Attention : \rightarrow ne pas oublier les contre-ions : pour une solution d'acide chlorhydrique, il faudra mettre des ions H⁺ et des ions Cl⁻ à la même concentration, celle de la solution.
- Astuce: \rightarrow quand on connait les espèces par leur nom, on peut choisir de cliquer sur **Rechercher une espèce** puis **Par identifiant ou synonyme**. Dans ce cas, faire attention aux accents, certaines molécules sont enregistrées avec les accents, d'autres non...

Par fomule	e brute
Par identif	iant ou synonyme
	Be[2+]
	Bi[3+]
	Ca[2+]
	Cd[2+]
Rechercher une espéce	Ce[3+]
	Ce[4+]
	C_[2,1]

6) Valider et passer à la burette :

II. PARAMÉTRAGE DU CONTENU DE LA BURETTE

1) Préciser le Volume maximal à verser :

Choix des ré Buret Volume m Réag	actifs:bécher Choix des réactifs:burette Espéces prése
x10	/10 Dilution Identifiant Concentration (mol/L)
	Rechercher une espéce

- 2) Introduire la solution titrante dans burette selon le même protocole que pour les réactifs dans le bécher.
- 3) Valider et passer au recensement :

III. CHOIX DES PRODUITS ET DES RÉACTIONS

La liste des produits de la réaction est proposée par le logiciel. Toutes les espèces ne doivent pas être gardées.

Exemple du titrage d'une solution d'acide chlorhydrique par de la soude.

1) Cliquer sur Tout décocher, certaines espèces disparaissent de la sélection.

Tout cocher Pour obtenir la formule bro	Tout décocher ute d'une espéce, sélectionnez la puis diquez s	sur le bouton ci-contre:	Formule brute ?
 ✓ C[-] ✓ H2O ✓ H(-) 	✓ Na[+] □ HCl(aq)	□ NaOH(☑ OH[-]	aq)
I = H[+]			s) ▶

- 2) Ajouter manuellement les espèces présentes qui ont été retirées de la liste par l'opération précédente en cliquant sur l'espèce. Ici, aucune espèce n'est à ajouter.
- Attention : → bien vérifier que toutes les espèces acido-basiques d'une famille sont bien présentes. Ex : solution d'acide sulfurique : vérifier la présence d'ions sulfate et hydrogénosulfate.

→ les espèces comme NaCl_(aq) ou HCl_(aq) ne doivent pas être cochées car on suppose, pour simplifier, que les sels sont totalement dissociés sous forme d'ions hydratés : Na⁺_(aq), Cl⁻_(aq), H⁺_(aq),...

Astuce : \rightarrow en cas de doute face au nom d'un sel comme l' « halite », cliquer sur l'espèce puis sur Formule brute ?

3) Après avoir **validé**, la liste des réactions retenues ainsi que les constantes de réaction correspondantes sont proposées. Elles peuvent être modifiées si nécessaire :

Dozzzaqueux					
Fichier Options Aide					
Choix des réactifs:bécher Choix des réactifs:burette	Espéces présentes	Réactions et constantes	Résultats	Choix des courbes	Tracé des courbes
Voici un ensemble d'équations de réactions lir	léairement indépe	ndantes entre elles déc	crivant le sy	stème chimique	
Vous pouvez modifier les logarithmes des con	stantes d'équilibre	si vous pensez en avo	ir de meilleu	ires estimations	
					•
Equation de réaction log K					
H2O = H[+] + OH[-] -14					
Valider et lancer les calculs>	>>>>				

4) Valider cette page pour lancer les calculs (plus ou moins longs selon le nombre de réaction mis en jeu).

IV. CALCULS

Le tableau suivant apparaît :

Volume versé	CI[-]	H[+]	Na[+]	OH[-]
(mL)	Conc.(mol/L)	Conc.(mol/L)	Conc. (mol/L)	Conc. (mol/L)
0	1.00E-001	1.00E-001	0.00E+000	1.000E-013
0.4	9.80E-002	9.61E-002	1.96E-003	1.04E-013
D.8	9.62E-002	9.23E-002	3.85E-003	1.08E-013
1.2	9.43E-002	8.87E-002	5.66E-003	1.13E-013
1.6	9.26E-002	8.52E-002	7.41E-003	1.17E-013
2	9.09E-002	8.18E-002	9.09E-003	1.22E-013

Exemple du titrage d'une solution d'acide chlorhydrique par de la soude.

On opte pour le tracé des courbes : Choisir les courbes à tracer.

V. REPRÉSENTATION GRAPHIQUE

Dozzzaqueux					_ 🗆 ×
Fichier Options Aide					
Choix des réactifs:bécher Choix des réactifs:burette Espéce	s présentes Réactions et constantes	Résultats Choix des cour	bes Tracé des courbes		
			Echelle horizontale		
Définir la grandeur portée en abscisse			G Automatique	Xmin=	
			C Manuala	Xmax=	
			Manucie		
Tout supprimer	Echelle verticale gauche	Ymin=	Echelle verticale droite	Verin	
	Automatique	Ymax=	Automatique	Tmin= j	
Aiouter une grandeur en ordonnée	C Manuelle		C Manuelle	rmax=	
			Manucie		
Europeanies Stude paints Taille paints Caudaus	Teindre estate Coningen trait Caballa				
Expression Style points Talle points Couleur	Jointine points Epaisseur trait Echelle				
✓ Valider et tracer les courbes >>>>	>				
	Saisie	de l'expression			
1) Definir la grandeur p	ortee en Saisisse	z l'expression de la gi	andeur . Les noms des variables (V	c1, c2,,n1, n2	
abscisse , le volume, V. C	n peut la significa	tions indiquées ci-des	5005		
taper ou la choisir dans la li	ste				
			A Validar		
			Valider		
	Variables	utilisables:		Opérateur	
	V: volum	e versé (en mL)		Opérat	
	V0: volur	ne de la solution présente	e initialement dans le bécher (en mL)	+ : 500	
	pH: -log(activité(H+))	(crime)	- : diffé	
	pOH: -log c1: conc	g(activite(OH-)) entration en Cl[-] (en mol	٨)	/: guot	
	c2: conc	entration en H[+] (en mo		^ : élé	
	c4: conc	entration en OH[-] (en mo	ol/L)	Fonctio	
	pc1: colo pc2: colo	garithme du rapport cono garithme du rapport cono	centration en Cl[-] /(1 mol/L)	log 100	
	pc3: colo	garithme du rapport cond	entration en Na[+] /(1 mol/L)	In() : lo	
	pc4: colo gamma:	garithme du rapport conc conductivité de la solutior	n en S/m	cos():	5 /0
1 P de Chimie – Dozzzaqueux				laip () + 4	3/8

2) Définir une Grandeur en ordonnée, le pH a priori :

Dozzzaqueux							
chier Options Aide							
hoix des réactifs:bécher	Choix des réa	actifs:burette	Espéces pr	ésentes	Réactions et co	onstantes Rés	ultats Cho
Définir la grand	eur portée	en abscisse	•	V			
Tout	: supprime	r		Echelle v	erticale gauche		Ymin=
Ajouter une g	randeur en	ordonnée		C Manu	elle		TINdx=
	Expression	Style points	Taille points	Couleur	Joindre points	Epaisseur trait	Echelle

On peut modifier le style des points, leur taille, ... en cliquant dans la case adéquate. C'est rarement utile, le paramétrage par défaut étant suffisant.

3) Si nécessaire, ajouter d'autres grandeurs à porter en ordonnées, de la même façon que le pH. Ex : concentrations, conductivité, pourcentages d'espèces... Certaines grandeurs sont dans la liste, les autres peuvent être construites en tapant la formule adaptée.

	Expression	Style points	Taille points	Couleur	Joindre points	Epaisseur trait	Echelle
Supprimer cette grandeur	рH		2		OUI	1	Gauche
Supprimer cette grandeur	[CI[-]]		2		NON	1	Droite
Supprimer cette grandeur	[Na[+]]	4.	2		NON	1	Droite

- Attention : \rightarrow bien mettre **Droite** dans la Colonne **Echelle** pour distinguer les échelles de pH et de concentration.
- 4) Valider et tracer les courbes.

Astuces : → on peut faire apparaître la légende sur chaque courbe en cochant l'option adéquate

Grille échelle gauche	🦳 Grille échelle	droite 🔽 Graduations	Axes 🔽	Légende 🦳 Exp. 🦳 Supe	rp. Unités/I	abels	Titre
Export résultats	Imprimer	Export graphe	Copier	Point particulier	Faisceau	Super	rposer

 \rightarrow en cliquant sur **Point particulier**, on fait apparaître une fenêtre permettant d'accéder à toutes les grandeurs calculées par le logiciel, dont les concentrations. On peut choisir le **Volume** en le tapant dans le cadre adéquat ou en utilisant les curseurs pour se déplacer sur la courbe, puis en cliquant sur **Calculer**. Utile pour obtenir des concentrations au niveau d'un point anguleux par exemple.

 \rightarrow On peut visualiser l'effet d'un indicateur coloré en le choisissant dans le menu déroulant :

Dozzzaqueux																				
Fichier Options Aide																				
Choix des réactifs:bécher Choix des réactifs:burette Espéces présentes Réactions et constantes Résultats Choix des courbes Tracé des courbes																				
Image: Superplane of the second se																				
Export résultats	xport résultats Imprimer Export			graphe Copier		Point particulier		Faisceau		Superposer		Bleu de bromothymol. Virage: de 6 à			à 7.6 💌					
рН	Dos	age de	20mL (de H[+]	(0.1 m	nol/L), (<u>ci[-1 (</u>	0.1 m	iol/L)	, par	40mL	de OH	I[-] (0.1	mol/L	.), Na[+	-] (0.1	mol/L)			
1.			J	l		l						1		1						-0.1
12										_		in	<u></u>	••••	<u>+····</u>				1	
				·•••••••••••••••••••••••••••••••••••••		÷						+	· • · · · · · · · · · · · · · · · · · ·		·	· · · · · · · · ·				
+	· · · ·		1			1	¦					1		1	1				;7	
10												÷	+		+					-0.08
····			÷	. .		÷	ļ					÷	. .	ł		. .			;l	- I
						+							+			+				- I
					•••	<u> </u>						1]	0.06
°						****														0.00
+						÷			1.000	*****	****				+					
				.L		÷		***		1 24.000	***.		ICII	-11			1	1		1
• <u> </u>			<u> </u>	1	[Na[+]]	I	T				T			+			<u> </u>		0.04
						÷			l	<mark></mark>						****	S			
+				1		÷	}			<mark></mark>		+	·+	÷	+	· † · · · · · · · ·	• +• • • • • • • •			1
4				1		+		+ +	-	7 -		+	+		T	+		+-+	J	↓ ∣
				.L						8		<u>.</u>		1	4					-0.02
·····				·			ļ		•	<mark></mark>			. .	ļ	·			·		- 0.02
2						+					<u></u>	+	+			+		+	- — — J	↓ ∣
рН			*****	++++++						.		†	1	i	+	1	1	1	J	↓
1.								1				1			-				v	
0	<i></i>	55	۰ <u>۱</u>	10		6 8		20	20			8	8		30	10	184	100	4	0

CONCLUSION

Si vous maitrisez le contenu de ce document, vous savez faire l'essentiel avec Dozzzaqueux. Il y a beaucoup d'autres options, à vous de les découvrir en vous entrainant !

Le logiciel est libre de droit et téléchargeable à l'adresse suivante :

http://jeanmarie.biansan.free.fr/dozzzaqueux.html

LU DANS LES RAPPORTS DU JURY...

« Les candidats disposent d'ordinateurs dans la salle pour traiter leurs résultats. Le logiciel gratuit *Regressi* est le tableur retenu pour le traitement des données. [...] Trois autres logiciels sont également à disposition des candidats :

- Un logiciel permettant d'exécuter des scripts informatiques en langage Python afin de réaliser des programmes de simulation Monte Carlo ou des régressions linéaires. Il est à noter que le jury propose aux candidats 3 programmes à compléter (régression linéaire, incertitude par la méthode de Monte Carlo dans le cas général et dans le cas d'un titrage). Les scripts doivent être montrés au jury avant tout éventuelle impression.

- Le logiciel Gum MC permettant d'estimer les incertitudes liées aux résultats expérimentaux obtenus.

- Le logiciel *Dozzzaqueux* permettant de simuler des courbes de titrage.

Le jury rappelle que ces logiciels sont librement accessibles en ligne, et encourage les candidats à s'y familiariser en amont de l'épreuve. (Mines2023/2024) »

« Pour la chimie des solutions, le logiciel de simulation dozzzaqueux est à la disposition des candidats. La maitrise de ce logiciel n'est pas au programme. Certains sujets suggèrent son utilisation sous la forme « On pourra utiliser le logiciel dozzzaqueux... » pour rappeler aux candidats qu'il est à leur disposition. Ce n'est en aucun cas une exigence du jury et une nécessité, les sujets proposés pouvant être résolus avec une simple analyse qualitative des données fournies. Ce logiciel est une réelle aide quand il est bien maitrisé par les candidats. En revanche, son utilisation pour simuler la courbe de titrage d'un acide faible par une base forte n'est peut-être pas pertinente. (Centrale2022) »